Register now to get rid of these ads!

Would this be to much carburetion for a 283?

Discussion in 'The Hokey Ass Message Board' started by marman1950, Feb 7, 2012.

  1. marman1950
    Joined: Jun 29, 2008
    Posts: 171

    marman1950
    Member

    I have a SBC 283. its a 62 block with 57 heads. Basically a stock engine. I'm wondering if I put on my tri-power set up with rochester 2g's on an edelbrock intake, if this would be to much carb for the engine?? Of course I have seen it done before.... who hasn't;), but I am wondering if 3 strombergs would be a better CFM for this fairly small displacement motor??? Any advice?
     
  2. Cutlassboy68
    Joined: Dec 3, 2011
    Posts: 593

    Cutlassboy68
    BANNED
    from Boone, Nc

    With the right jetting and tuning it would work fine.
     
  3. Yep. Proper jeting and set them up and you'll be good to go.
     
  4. fiddy
    Joined: Sep 24, 2009
    Posts: 163

    fiddy
    Member

    my rochesters work great on the 283...stock other than the cam.
     

  5. El Caballo
    Joined: Mar 3, 2001
    Posts: 6,299

    El Caballo
    ALLIANCE MEMBER

    I lifted this from the Carburetor Shop of Eldon, MO. Scroll down to the 283 section.

    Carburetor aftermarket size selection criteria – street

    Most car enthusiasts are familiar with (or have at least heard of) the following equation:

    CFM = (RPM times CID) / 3456

    This equation will give the required CFM for a multi-cylinder four-stroke internal combustion engine consisting of at least four cylinders (it may be used for fewer cylinders, with modifications) and a common plenum area for the intake; with a volumetric efficiency of 100 percent.

    Unfortunately, many do not understand either the derivation of the equation OR its correct usage.

    Derivation

    CFM is airflow of the engine measured in cubic feet per minute.

    RPM is the speed of the engine measured in revolutions per minute.

    CID is the displacement of the engine measured in cubic inches.

    The constant 3456 is more easily understood, and much more easily remembered if it is re-written (12 x 12 x 12 x 2). Note that the dimensions on the left side of the equation are in cubic FEET, and the dimensions on the right side of the equation are in cubic INCHES. As there are 12 inches in a foot, and we must then multiply 12 by 12 by 12 to keep the dimensions the same. The “2” is required because of the 4-stroke engine only drawing air on ever other revolution of the engine. The equation assumes 100 percent volumetric efficiency of the engine (more on this later).

    Use/misuse of the equation

    Many enthusiasts will take an arbitrary RPM that would be a “dream” RPM for their engine at WOT (wide open throttle), ignore the volumetric efficiency, and buy the next larger carburetor to the figure derived by plugging this dream RPM and the engine CID into the equation. This will yield less than desirable results for most street engines.

    One should be reasonable in the maximum RPM figure used. If one doesn’t know, then one may concern a “Motors” manual in the reference section of one’s local library for WOT rated RPM. Once a CFM figure is obtained at 100 percent volumetric efficiency, apply an estimate of the volumetric efficiency of your engine to this figure. Examples will follow later. Some sample estimates of volumetric efficiency of various engines:

    Pontiac V-8 400 CID Ram Air IV approximately 90 percent

    Pontiac V-8 400 CID Ram Air III approximately 85 percent

    Pontiac V-8 400 standard 4-barrel engine approximately 80 percent

    Most 2-barrel V-8s and most USA-built 6-cylinders 75 percent

    Once the 100 percent figure is obtained, the actual need may be obtained by multiplying the 100 percent figure by the appropriate percentage.

    Since the equation varies as the RPM varies, it should be obvious that the equation may be used for both cruise, and WOT to obtain CFM requirements for both conditions.

    Carburetor selection

    The figures obtained above will refer to CFM using “wet” ratings. Remember that there are several different rating systems – see CFM RATINGS

    When selecting the carburetor, use the WOT rating to determine the carburetor’s maximum airflow, and the cruise rating to as much as possible maximize airflow in the primary side of the carburetor at cruise. Why is this important? The two major factors in atomizing the fuel in the airstream are heat and air velocity. Given the same airflow requirement for carburetors of different size, it should be obvious that air velocity would be less in the larger carburetor. This usually requires that if the primary side of a four-barrel is too large, that extra fuel must be provided to provide the proper mixture. This is simply a waste of fuel. The lower air velocity will also create a “sluggish” engine at lower RPM’s. Often this issue can be better solved by the use of a spread-bore carburetor rather than a square-bore carburetor for engines of wide RPM range.

    While this article is meant to be “brand-independent”, since I am most familiar with Carter and Rochester 4-barrels, primary and secondary flow data for popular Carter aftermarket carburetors is provided in the CFM Ratings article mentioned above.

    Examples

    Pontiac 400 CID basically stock with factory 2 barrel

    CFM = CID * RPM / 3456 = 400 * 4600 / 3456 = 532 CFM at 100 percent VE

    From estimate chart VE = 75 percent, or actual required CFM = 532 * 0.75 = 399 for a two-barrel

    By adding a four-barrel and dual exhaust, the WOT RPM would increase to 5200, while the VE would improve to 80 percent

    Thus for our modified 400, necessary WOT CFM = 400 * 5200 *.8 / 3456 = 481. Pontiac used a Carter 550 CFM as original equipment, which is entirely adequate for this application.

    Calculating for cruise: CFM = 400 * 2200 * 0.75 / 3456 = 204 CFM on the primary side

    Chevrolet 283 basically stock with factory 2 barrel

    CFM = [CID * RPM / 3456] * 0.75 = [283 * 4600 / 3456] * 0.75 = 282 CFM for a two-barrel

    By adding a four-barrel and dual exhaust, the WOT would increase to 5200, while the VE would improve to 80 percent

    Thus for our modified 283, necessary WOT CFM = 283 * 5200 * 0.8 / 3456 = 341. The original Carter/Rochester four barrels flowed approximately 450, which was more than adequate.

    Calculating for cruise CFM = 283 * 2200 *0.8 / 3456 = 144 CFM on the primary side
     
  6. Hnstray
    Joined: Aug 23, 2009
    Posts: 12,355

    Hnstray
    ALLIANCE MEMBER
    from Quincy, IL

    Great tech info.....thanks for posting!


    Ray
     
  7. GassersGarage
    Joined: Jul 1, 2007
    Posts: 4,726

    GassersGarage
    Member

    I ran the 2G's on my stock 283. With progressive linkage, it was no problem.
     
  8. mastergun1980
    Joined: Oct 18, 2010
    Posts: 1,094

    mastergun1980
    Member
    from Alva OK

    Or you sould split the difference and run 3 stromberg 48's more cfm than a 97 but less than the 2g's
     
  9. marman1950
    Joined: Jun 29, 2008
    Posts: 171

    marman1950
    Member

    El caballo.... Great info. I think it will be slightly to much carb even jetted down but that's okay cause I will just drive faster!!!! I talked to vintage speed and they said about the same thing... It's not ideal but it will work.
     

Share This Page

Register now to get rid of these ads!

Archive

Copyright © 1995-2021 The Jalopy Journal: Steal our stuff, we'll kick your teeth in. Terms of Service. Privacy Policy.

Atomic Industry
Forum software by XenForo™ ©2010-2014 XenForo Ltd.